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Given a connected network, it can be augmented by applying a growing strategy(e.g., random- or
preferential-attachment rules) over the previously existing structure. Another approach for augmentation, re-
cently introduced, involves incorporating a direct edge between any two nodes which are found to be con-
nected through at least one self-avoiding path of lengthL. This work investigates the resilience of random- and
preferential-attachment models augmented by using the three schemes identified above. Considering random-
and preferential-attachment networks, their giant cluster are identified and reinforced, then the resilience of the
resulting networks with respect to highest-degree node attack is quantified through simulations. Statistical
characterization of the effects of augmentations over some of the network properties is also provided. The
results, which indicate that substantial reinforcement of the resilience of complex networks can be achieved by
the expansions, also confirm the superior robustness of the random expansion. An important obtained result is
that the initial growth scheme was found to have little effect over the possibilities of further enhancement of
the network by subsequent reinforcement schemes.
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I. INTRODUCTION

Much has been learnt about several aspects of complex
networks [1–3] by looking at such models from different
theoretical and practical points of view, such as network
growth and critical phenomena(e.g.,[3,4]), node degree dis-
tribution (e.g.,[1]), distance between nodes(e.g.,[5]), diffu-
sion(e.g.,[6]), and resilience to attack, to name but a few. As
each of these situations drives the researcher to focus atten-
tion on specific topological and functional aspects of the in-
vestigated networks, they contribute to a more comprehen-
sive and integrated understanding of the many complexities
of networks. The current work addresses the resilience issue
by taking into account the following three important perspec-
tives. First, we target the situation where one wants to en-
hance an already existing network with respect to attacks by
adding new edges; second, we consider the abrupt change of
rules during the network growth, producinghybrid models;
and third, we investigate the potential of the recently intro-
duced concept ofL expansion of a network[7] for enhancing
resilience.

Because of its immediate practical consequences to Inter-
net and distributed systems, the problem of characterizing
the resilience of complex networks has received growing at-
tention, especially after the seminal papers by Albertet al.
[8], who addressed node deletion in scale-free models of
Internet, and investigation by Callawayet al. [9] on random
networks under attack. Other related works include the[10]
comprehensive comparative investigation by Holmeet al.
[10] of the resilience of several types of networks consider-
ing different schemes for attacking nodes and edges, and the
analysis of internet breakdown[11] by Cohenet al. Interest-
ing works on network performance under attack have also
appeared in computer science journals, including the in-

depth investigation of Internet under attack at the network
level [12] and the simulation approach to denial of service
attacks[13], as well as the studies of internet topology and
fault tolerance reported in Ref.[14]. Works targeting specific
types of network include, but are not limited to, Newman’s
investigation of e-mail networks[15], study of metabolic
systems[16] by Jeonget al., and Dunne’s analysis of food
webs[17]. More recently, the concept ofL expansions of a
complex network was suggested[7] which, by enhancing the
network connectivity, was believed to present good potential
for increasing the resilience of existing networks.

This paper starts by reviewing the concept ofL expan-
sions and augmentations of a network and follows by dis-
cussing hybrid networks. Statistical analysis and predictions
about the effect of the augmentations over the network prop-
erties are presented next, followed by the discussion of the
obtained results and identification of perspectives for further
investigation.

II. Q AUGMENTATIONS OF A NETWORK

Recently introduced[7], the concept ofL expansion of a
given network(any type, directed or not) seems to provide
good potential for reinforcing the connectivity regularity of
existing networks, with implications for resilience. Given a
graphG, its L expansion consists of a graph where connec-
tions from nodei to j are established whenever there exists a
self-avoiding path(i.e., never passing by the same node
twice) of lengthL connectingi to j in G. Here we introduce
the concept ofQ-augmented network in order to express net-
works obtained by the union of the original graph with its
respectiveL-expandedmodels forL=2 to L=Q. This simple
concept is illustrated in Fig. 1, which shows an original net-
work (a) and its respective two-, three-, and four-augmented
versions. It is interesting to observe that these augmentations
reinforce the regularity of the network up to lengthQ. An
important global measurement of the effect of the augmen-*FAX: 155 162 73 9879. Email address: luciano@if.sc.usp.br
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tation on the network connectivity is the ratio between the
number of connections in the augmented and original net-
works, henceforth represented asr and denominatedaug-
mentation ratio. This work is restricted toQ=3 and 4, as
smaller values lead to rather uneffective resilience reinforce-
ment and higher values would imply extreme augmentation
of the network connectivity.

III. HYBRID NETWORKS

Hybrid networks are here understood as graphs obtained
through the application of more than one growing strategy.
Although such a mixup of evolutions can take place simul-
taneously, here we consider the situation where the network
was grown under a scheme which was subsequently
switched to another growing strategy. Such alternation of
schemes, to several degrees of switching abruptness, are
typical of several real networks. For instance, the neuronal
networks constituting the central nervous systems of mam-
mals are known to undergo major changes of topology and
connecting rules during the first weeks of life of the indi-
vidual as a consequence of the exposition of such networks
to dynamical stimuli[18,19]. In other words, the animals are
born with pre-wired networks that are subsequently rewired
and pruned down as a consequence of the presentation of real
stimuli. Other situations where the growing network under-
goes abrupt changes of connectivity regard, for instance, the
introduction of new technologies. The existing telephonic
network, for instance, includes older physical connections
through cables augmented by the incorporation of satellite
and cellular telephony(e.g., Refs.[20,21]). In this case,
while the previous network exhibited a more regular nature
imposed by the spatial constraints of wiring cables(spatial
adjacencies), the satellites and antennae incorporated at later
stages concentrate connections, acting as the hubs of scale-
free networks. A similar situation occurred when air trans-

portation(e.g., Ref.[22]) was introduced in addition to trains
and automobiles, with the main airports acting as hubs of a
previously regular network, with the range of connections
limited by the two-dimensional adjacencies underlying car
and train transportation(e.g., Ref.[23]).

The N nodes of the network of interestG are henceforth
represented ask and theE edges as ordered pairssi , jd, with
the respective adjacency matrix being expressed asA. No
self-connections are allowed. Given a networkGa of a spe-
cific type a (e.g., random- or preferential-attachment), its
augmentation(see, e.g., Ref.[24]) PasGbd can be obtained
by applying the growing rules of any other model typeb
over the existing networkG, implying the addition ofDE
new edges but without changing the number of nodes. It is
observed that the termpreferential attachmenthas been used
instead ofscale freeas it will not typically lead to a scale-
free network when used as expansion model. Among the
several subclasses of scale-free networks(e.g., Refs.[25,26],
the preferential attachment growing scheme used in the cur-
rent work involves choosing a pair of nodes for connection
with probability proportional to the respective number of
connections(or node degrees). More specifically, a list of the
nodes participating in connections is kept at all times, with
repetitions, and the node candidates for connections are
drawn from such a list with uniform probability(e.g., Ref.
[27]). The random model involves selecting from among the
NsN−1d /2 possible connections according to the uniform
statistical distribution(e.g., Ref.[1]).

Therefore,DE corresponds to the number of edges that
are added to the network as a consequence of the second
growth stage in order to boost its resilience to attack. Thus,
we can have a random model augmented by the preferential
attachment, or a preferential-attachment network followed by
a Q augmentation. Such combinations of growing schemes
are henceforth calledhybrid augmentation, of which the cur-
rent work considers the six following situations:(i) random
followed by random — i.e.,PRsGRd; (ii ) random followed by
preferential-attachment — i.e.,PPAsGRd; (iii ) random fol-
lowed by itsQ augmentation — i.e.,PQEsGRd; (iv) Preferen-
tial attachment followed by random — i.e.,PRsGPAd; (v)
Preferential attachment followed by preferential attachment
— i.e., PPAsGPAd; (vi) Preferential attachment followed by
its Q augmentation — i.e.,PQEsGPAd.

Observe that the two cases where a model is followed by
an augmentation of the same type are equivalent to consid-
ering a single network of the same type containing the same
number of nodes and edges as in the other cases. It is inter-
esting to observe that the augmentation of a network where
aÞb typically is not commutative, i.e., generallyPasGbd
ÞPbsGad. For the sake of a fair comparison of the models,
all networks derived from the initial connected graphG have
as approximately as possible the same number of nodes and
edges. More specifically, the procedure for generating the
hybrid augmented models starts by growing a networkGa of
type a and containingN0 nodes, and the giant cluster is
identified with sizeNGCøN0 nodes andEGC edges. In the
case of the random model, the density of edges of the net-
work Ga from which the giant cluster is extracted is deter-
mined asli = i /N0, so thati =1,2,3 controls the density of

FIG. 1. A simple graph(a) and its respective two-(b), three-(c),
and four-augmentations(d). The edges of the initial network(a) are
shown by thicker lines in(b-d).
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connections. Observe that the network percolation takes
place neari =1. In the preferential-attachment case, the num-
ber of edges of the network from which the giant cluster is
extracted is determined asE0=lisN0−1d /2. The respectively
extracted giant cluster acts as the original networkG, which
is subsequently augmented byDE new edges according to
the model b. The augmentation by the random and
preferential-attachment schemes is done so as to ensure the
same number of nodes and connections for each considered
situation, which is done by using the above specified values
li and E0 for the random and preferential-attachment
schemes, respectively. Thus the resulting network contains
NGC nodes andE=EGC+DE edges, so thatr=E/EGC=1
+DE/EGC. The number of edges does vary forQ=3 andQ
=4, so that these two situations cannot be direcly compared.

In order to substantially reduce the dispersion of the num-
ber of nodes and edges in the initial giant cluster, only those
clusters with size larger than the respective averages(which
were previously identified by experimental means) were con-
sidered for augmentation. The resilience of the hybrid mod-
els was quantified by considering the giant cluster of size
Msnd obtained after removing an increasing numbern of
nodes. Although some analyses were performed with edge
removal(see Sec. V), the present work concentrates on the
highest-degree node removal. All simulations adoptedN0
=50 and were carried out for 200 realizations of each con-
figuration.

IV. STATISTICAL ANALYSIS

First we turn our attention to a mean-field analysis of the
effect of the augmentation scheme over the increase of the
number of edges. Let the node original network haveN
=NGC nodes and the probability of existence of an edgesi , jd,
i Þ j , be p, so that the maximum number of edges isET
=NsN−1d /2, the average number of edges isE=pET and the
average node degree isk=2E/N=psN−1d. For simplicity’s
sake, we assume that the network is sparse in the sense of
including few cycles, which is a good approximation for
most of the edge densities considered in this paper. We also
assume the probability of having a connection between a pair
of nodes to be independent of that of other edges, which
largely constrains the subsequent analysis to the random
model.

For L=2, the two expansions can only take place between
subsequent pairs of edges, as illustrated in Fig. 2(a), imply-
ing a maximum ofksk−1d /2 new expanded edges. Asp
edges will already exist in the average, the effective number
of new edges added by the respective expansion for each
node iss1−pdksk−1d /2, yielding the addition ofDE2 edges
as estimated by Eq.(1). For L=3, the expansion will only
take place in situations such as that depicted in Fig. 2(b), i.e.,
each new edge will be added between one of the nodes con-
nected toi and one of the nodes connected toj . The maxi-
mum number of such edges therefore isc2=k2−k [28], im-
plying the average number of new edges to be given by Eq.
(2) and an average augmentation ratio ofr3 estimated by Eq.
(4). The situation forL=4 similarly leads toDE4 as given in
Eq. (3) and the average augmentation ratior4 which can be

estimated by Eq.(5). It follows from this analysis, under the
specified assumptions, that the number of edges added by the
augmentations is, in the average, proportional to the square
of the average node degree. Interestingly, as the two expan-
sion completes all connections between the nodes attached to
each network node — see Fig. 2(a), it automatically implies
the clustering coefficient of the resultingQ augmented net-
work to be one forQù2:

DE2 = Ns1 − pdksk − 1d/2, s1d

DE3 = ps1 − pdc2ET, s2d

DE4 = p2s1 − pdc2ET, s3d

r3 = sE + DE2 + DE3d/E, s4d

r4 = sE + DE2 + DE3 + DE4d/E. s5d

Next we turn our attention to the prediction of the effect
of the agumentation schemes over the connections of the
networks. The random case immediately implies a uniform
increase of the average node degree irrespective of the initial
growing model. In other words, theDE new edges are uni-
formly distributed among the existing nodes by the random
augmentation. On the other hand, the preferential attachment
will tend to increase the node degree of those nodes whose
degree was already large, according to the “rich get richer”
scheme, implying a good deal of the reinforcement connec-
tions will be expended with the nodes with highest degrees.
As discussed above, the addition of new connections to a
node i provided by theQ augmentation is governed by the
degrees of that node and those to which it connects. Two
situations have to be analyzed: with respect to the reinforce-

FIG. 2. The basic constructions used in the mean-field approach
to estimating the augmentation ratio for expansions byL=2 (a) and
3 (b).
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ment provided by expansions withL=2 and for higher val-
ues of L. In the former case, the number of connections
added to each specific nodei increases directly with the
square of the respective node degree, i.e.,DE2sid=s1
−pdksk−1d /2. Therefore, this expansion will tend to assign
more edges to the nodes attached to the highest degree
nodes, which also tend to have higher node degree, implying
unbalance in the use of theDE reinforcement edges. The
expansions implied by higher values ofL will depend on the
node degrees of the pair of nodessi , jd at the extremities of
the L pathway — see Fig. 2(b). More specifically, if those
node degrees areki and kj we have thatDELsi , jd=psL−2ds1
−pdkikj. Some insight can be achieved on such an effect by
assuming the conservation ruleki +kj =A, from which we
have thatDELsi , jd=ckisA−kid, for c=psL−2ds1−pd. Hence we
have that the highest number of added edgesDELsi , jd is
obtained forki =kj. At the same time, this type of expansion
will assign fewer new edges wheneverki Þkj, which tends to
equalize the uniformity of the distribution of new nodes
among a network grown by preferential attachment for the
cases whereki is substantially different fromkj.

As the network deconstruction is here assumed to occur
by attacking the node with current highest degree, augmen-
tation schemes that assign a large percentage of theDE re-
inforcement edges to a few nodes, such as is the case of the
preferential attachment, are destined to perform poorly. In
this sense, the random augmentation is expected to perform
substantially better than the preferential-attachment scheme.
On the other hand, given the tendency ofQ augmentations to
enhance connectivity around the nodes with highest degree
associated with its equalizing effects, the potential of this
strategy for enhancing the resilience to dominant node attack
is likely not to be particularly effective.

V. RESULTS AND DISCUSSION

Several experimental investigations were performed by
consideringN0=50, i =1,2,3 andQ=3,4. Thefirst impor-
tant point to be addressed regards the main global properties
of the giant clusters obtained by the two different growth
schemes, namely, random and preferential-attachment
growth. Table I presents the average and standard deviation
values of the total number of nodes, edges and average de-
gree obtained for the two models consideringi =1,2,3. The

fact that the giant cluster appears neari =1 is clearly inferred
by the relatively large standard deviations of the giant cluster
sizes shown in the first column of Table I. The smaller dis-
persion of the values in that table fori =2 and 3 indicate that
the giant clusters considered for augmentation had about the
same global properties, allowing a relatively fair comparison
of the resilience to attack. Table II shows the augmentation
ratiosr obtained experimentally and estimated from the data
in Table I by using the equations developed in the previous
section. The theoretical values are found to have provided a
reasonably good prediction of the augmentation ratios, espe-
cially for the random strategy and for smaller values ofi, as
it would be expected from the assumptions adopted while
developing the equations forr. It is also clear from Table II
that the four augmentation tended to imply higher number of
additional edges than the three augmentations, and that the
values ofr are reasonably close for the situations to be in-
dependently compared regarding attack resilience, namely
Q=3 and 4.

The numbers of remaining nodes in the network under
attack, aftern removals of the nodes with current maximum
degree(see Ref.[29]), are shown in Figs. 3 and 4, for
random- and preferential-attachment initial networks, respec-
tively. The growing models are identified by the curve marks
(see respective captions). The effect of increasing values ofi
and, to a lesser extent ofQ, on the resilience is promptly
observed from these figures. In other words, the addition of
DE edges, quantified by the augmentation ratios in Table II,
contributed to substantially reinforcing the network structure
and resilience to node attacks. The best resilience was ob-
served for the situation involving initial networks adopting
i =3 andQ=4 [see Figs. 3 and 4(f)], with the networking
breakdown occurring only aftern/N0.0.7. As it could be
expected given its performance in homogeneous networks
[10], the random augmentation allowed the best resilience
reinforcement inall situations. TheQ augmentation pre-
sented the poorest performance, which was, however, supe-
rior to the preferential-attachment model at the very last
stages of the attacks in several situations. Except for these
cases, the preferential-attachment type of augmentation pre-
sented intermediate performance. Another interesting aspect
is that the growing model chosen to produce the giant clus-

TABLE I. The average and standard deviation values of the
number of nodes, total of edges, and average node degree of the
giant clusters obtained by the random- and preferential-attachment
models.

i =1 i =2 i =3

Random NGC 16.9±2.1 41.9±1.6 47.4±0.4

EGC 16.2±2.2 47.9±1.6 72.8±0.5

Av. deg. 1.9±0.1 2.3±0.1 3.1±0.1

Preferential-
Attachment

NGC 17.3±2.1 40.1±0.9 45.8±0.7

EGC 14.0±2.3 48.1±0.8 72.8±0.4

Av. degree 1.9±0.1 2.4±0.6 3.2±0.7

TABLE II. The average and standard deviation values of the
experimental augmentation ratior and the respective theoretical
predictions for the six hybrid models considered in this work
(Theor. =theoretical and Exper. =experimental).

Q Type i =1 i =2 i =3

Random 3 Exper. 3.8±0.38 5.34±0.54 7.64±0.42

Theor. 4.2 6.1 10.1

4 Exper. 5.2±0.60 8.4±1.02 11.9±0.58

Theor. 4.8 6.4 10.7

Preferential-
Attachment

3 Exper. 4.4±0.63 6.9±0.86 9.1±0.74

Theor. 4.8 6.4 10.7

4 Exper. 6.1±1.00 9.5±1.00 12.4±0.71

Theor. 5.2 6.8 11.3
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ters had little effect over the subsequent augmentations,
which is supported by the similar curves in Figs. 3 and 4.
This is possibly explained by the fact that the intense rein-
forcements implied by theQ augmentations tended to equal-
ize the topological properties of the enlarged giant clusters.
However, the preferential attachment did tend to perform
slightly better for the situations involving giant clusters ob-
tained through preferential attachment. Investigations with
larger values ofNGC tended to produce similar results.

VI. CONCLUDING REMARKS

This paper described the investigation of the resilience of
six hybrid network models obtained through the process of
augmenting an initial connected network. This situation pre-
sents interest not only for its theoretical implications, but
also because of practical concerns while trying to enhance
the design of specific network systems in order to suit fault-
tolerance specifications. The six network models included
the random and preferential-attachment traditional networks
augmented by random, preferential attachment andQ aug-
mentations(for Q=3 and 4). Based on the concept ofL
expansions, theQ augmentationsof existing networks was
presented and investigated, including some statistical predic-
tions of the resulting network properties, for the first time in

this paper. Interestingly, theQ augmentations were found
always to lead to unit clustering coefficient, a fact that par-
tially clarifies the type of connectivity enhancement implied
by such augmentations.

The obtained results revealed some interesting aspects
which tended to agree with the statistical analysis. First, the
augmentation of the initial giant cluster was observed to sub-
stantially enhance the resilience of the final network, at the
expense of a larger number of edges. Second, the random
model confirmed its superiority regarding the highest degree
nodes attack, with the preferential-attachment networks com-
ing second, except at the very last stages of the attack se-
quence, where theQ augmentations tended to provide behav-
ior similar to that of the random networks. Another
interesting result is the fact that the initial model(type and
growth parameters) had little effect over the subsequent re-
silience enhancement obtained through the three considered
augmentation schemes, except for the fact that the
preferential-attachment augmentation tended to perform bet-
ter when applied to giant clusters obtained by this same
growing model.

The problem of reinforcement can be understood as a spe-
cific situation of a broader class of problems where one
wants toredesignor adapta given network in order to obtain
specific topological or functional properties. Such a situation
could arise in several contexts, for instance in internetwork-

FIG. 3. The normalized number of nodes remaining in the giant clusterfMsnd /Nog in terms of the normalized number of removed nodes
sn/Nod for the cases(i)–(iii ), i =1,2, and 3 andQ=3,4, where filledL= initial network, += R,3= PA, andL= QE indicate the augmen-
tation model.
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ing, electronic circuits(analogic or digital), and also biology.
Regarding this latter situation, a particularly interesting case
is the exposure of existing biological networks—including
metabolic, protein, food chain, and ecological—to abrupt en-
vironmental variations of the geographical, environmental,
and metereologic conditions that permeate the evolutionary
process.

Future works may consider the evaluation of the perfor-
mance of other hybrid systems, such as those obtained by
union of two distinct models(e.g., Ref.[30]), progressive
modification of the growing scheme(e.g., Ref.[31]), or even
successive alternations of the augmentation schemes. An-
other interesting further work is to devise modifications of
the Q-augmentation scheme where expansions are not ap-
plied indiscriminately over all nodes, but at random or selec-
tively to specially critical nodes(e.g., those with low degree
or betweeness centrality). Actually, such a line of reasoning
ultimately leads to the following question: Given an existing
network, how to identify the optimal augmentation scheme,
i.e., that leading to the best overall resilience at the expense
of the smallest number of additional edges?

Although this type of problem has been well developed in
the context of traditional graphs(e.g., Ref.[24]), it would be
interesting to revisit it by considering the new concepts and
results from complex network research. Another related
question is given an augmented network, how to identify the
initial and/or expanding models?

For instance, the concept of L-conditional expansion[7]
can be used to identify the regular connections implied byQ
augmentations. In addition, it is worth observing that, in ad-
dition to enhancing the connectivity of the initial network,Q
augmentation are also likely to promote higher regularity of
node degree at the scale defined byQ. Possible means to
identify augmentation schemes leading to high(or maxi-
mum) resilience is to use simulated annealing or the genetic
algorithm.
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FIG. 4. The normalized number of nodes remaining in the giant clusterfMsnd /Nog in terms of the normalized number of removed nodes
sn/Nod for the cases(iv)–(vi), i =1,2, and 3 andQ=3,4, where filled L= initial network, += R, 3= PA, and L= QE indicate the
augmentation model.
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